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A commonly held belief is that traffic engineering and routing

changes are infrequent. However, based on our measurements over

a number of years of traffic between data centers in one of the

largest cloud provider’s networks, we found that it is common for

flows to change paths at ten-second intervals or even faster. These

frequent path and, consequently, latency variations can negatively

impact the performance of cloud applications, specifically, latency-

sensitive and geo-distributed applications.

Our recent measurements and analysis focused on observing

path changes and latency variations between different Amazon aws

regions. To this end, we devised a path change detector that we

validated using both ad hoc experiments and feedback from cloud

networking experts. The results provide three main insights: (1)

Traffic Engineering (TE) frequently moves (TCP and UDP) flows

among network paths of different latency, (2) Flows experience

unfair performance, where a subset of flows between two machines

can suffer large latency penalties (up to 32% at the 95th percentile)

or excessive number of latency changes, and (3) Tenants may have

incentives to selfishly move traffic to low latency classes (to boost

the performance of their applications). We showcase this third

insight with an example using rsync synchronization. To the best of

our knowledge, this is the first paper to reveal the high frequency of

TE activity within a large cloud provider’s network. Based on these

observations, we expect our paper to spur discussions and future

research on how cloud providers and their tenants can ultimately

reconcile their independent and possibly conflicting objectives. Our

data is publicly available for reproducibility and further analysis at

http://goo.gl/25BKte.

1 INTRODUCTION

Cloud provider networks play an essential role in guaranteeing

Quality-of-Service (QoS) of tenant applications; however, little is

known about how traffic is routed in practice across such networks.

Network operators have long relied on Traffic Engineering (TE)

tools to optimize the flow of traffic within their networks, with

varying degrees of success. At the beginning of the 2000s, shortest-

path routing protocols, such as OSPF [28] and RIP, were prevalent

despite being ill-suited for TE operation [16]. Since these protocols

lack fine-grained routing control, TE optimization was infrequent

and suboptimal. TE optimization became prevalent with the advent

of MPLS technology [32] and later with the introduction of the

Software-Defined Networking [11] paradigm. Since then, Microsoft

and Google have reported performing TE optimizations of their

wide area networks with a 5-minute period [22, 29].

Are today’s TE optimizations hindering network traffic

performance? Despite the crucial role played by TE tools,

the impact of frequent TE optimization on the network traffic’s

performance has not been adequately explored. In this paper, we

take a first step in this direction by looking at the impact of TE on

cloud application’s traffic.

Cloud providers perform TE to efficiently utilize their network

resources. However, this goal may not align with the needs of

tenants’ applications and their associated traffic. Fig. 1 shows

the Round Trip Times (RTTs) of three different TCP connections

established between two machines located in two different Amazon

aws regions — namely Oregon and Virginia. Each TCP connection

uses a distinct TCP source port and periodically generates a ping

message tomeasure the RTT.We observe that each flow experiences

different RTT values. Moreover, these RTTs are relatively stable

around one value for a period of time before suddenly “jumping”

to a different value.

Figure 1: TCP RTT measured between two Amazon VMs

deployed in Oregon & Virginia. The black dotted vertical

lines highlight moments when RTT latency changed and

indicate potential TE activity (e.g., path changes).
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This simple experiment leads to three observations: (1) TE is

operating at a time scale of seconds, (2) traffic flows may experience

frequent latency variations, and (3) TE may be unfair as some

flows consistently experience higher latencies (e.g. flow C) and/or

experience more frequent latency changes (e.g. flows A and C) than

others.

Highly-variable flow latencies can be cumbersome for

application developers. First, high-frequency oscillations in

inter-region latencies adds yet another source of uncertainty

for application developers — as Microsoft Bing’s [7] developers

observed [29]. Consequently, guaranteeing latency-related Service

Level Agreements (SLAs) for latency-sensitive geo-distributed

services [20, 23] can be difficult. Secondly, the performance of

congestion control algorithms, both loss-based and delay-based

ones, degrade under frequent latency changes, e.g., due to packet

re-ordering [8, 25, 35, 38]. Additionally. applications relying on UDP

can be negatively affected by packet reordering (e.g., VoIP [24]).

Finally, our results show that a fraction of “unlucky” flows can

suffer from high RTTs over prolonged periods (hours and days),

further exacerbating application performance problems. Our prior

work [9] shows that these traffic characteristics have existed

consistently for at least a few years (since January 2015) and our

continued measurements have shown that they are not transient.

This prompted us to take a deep dive and study this phenomenon

more comprehensively.

Measuring TE effects in a large-scale Cloud network. In this

paper, we study the effects of TE on flow latencies measured among

all 16 currently available Amazon aws regions, all of which are

connected via Amazon’s privately-owned infrastructure [17]. We

conducted measurements between up to 105 unique region pairs

to identify latency characteristics of traffic flows and thoroughly

study the three observations presented above.

Results and implications for TE& the design of applications.

Our measurements for this paper encompass data gathered over a

2-week span. We have also conducted several other measurement

snapshots for AWS from 2015 to 2019. All our data indicates that

flows frequently jump between paths that can have as high as

20% greater latency than the lowest observed latency path. We

corroborated our findings in discussions with cloud networking

experts.

Our analysis shows that the changes in latency are caused

by frequent routing changes and are potentially problematic for

delivering traffic that desires specific performance guarantees.

Moreover, we also found that, despite these frequent changes,

there is unfairness in the observed flow latencies — where some

flows get the lion’s share of low and consistent latencies while

others are penalized over long periods of time. Flow unfairness can

be undesirable, especially for latency-sensitive services deployed

across several geographic regions [37]. Last but not least, tenants

have incentives to monitor the latency observed per source port and

then selfishly move latency-sensitive traffic to low latency paths.

This could, in turn, overload certain paths and trigger a counter-

response from the TE mechanisms, a classic problem known as

“Selfish Routing” [33]. This paper does not aim to solve these

problems but rather exposes the current effects of TE. The hope

is that quantifying these effects would motivate the community

to tackle the challenges of designing TE mechanisms suitable for

cloud environments.

2 BACKGROUND

This section provides the necessary background on both cloud

network architectures and TE techniques to optimize the flow of

traffic in cloud networks.

Architecture of a cloud provider network. The three largest

cloud providers worldwide (e.g., Amazon AWS, Microsoft Azure,

Google Cloud Platform) deploy their networks using a similar

hierarchical structure. Within each cloud provider, a set of typically

more than 10 regions are interconnected by a globally-deployed,

singly administered, cloud backbone network infrastructure. All of

the regions are subdivided into availability zones, each consisting of

at least one datacenter (DC) network. Cloud tenants buy computing,

storage, and network resources within or across regions where their

services are deployed.

Traffic engineering basics. Network operators perform TE

to optimize the flow of traffic in their network, e.g., reducing

communication latency, ensuring fairness, and providing traffic

isolation without increasing packet drops. TE consists of a

closed control loop between a monitoring component and a route

computation component. This loop spans both the data- and control-

planes. The data-plane both forwards packets according to the

installedmonitoring& forwarding rules and collects traffic statistics.

The control-plane fetches the collected traffic statistics and feeds

them as input to the route computation engine, and then updates the

data-plane with newly computed routes (in the form of per-switch

forwarding rules).

Multipath forwarding mechanisms. Modern TE mechanisms

make extensive use of multipath forwarding [22] to split an

aggregate of traffic flows across different paths. Specifically, for each

aggregate of flows between two nodes in a network, the operator

specifies the splitting ratio of this traffic aggregate that should be

routed on each path [39]. The operator also specifies whether the

splitting of the traffic aggregate should be performed at the per-

flow granularity (i.e., packets with a common set of header fields

traverse the same path) or at the per-packet granularity (i.e., packets

are routed using some sort of weighted round-robin scheduler).

Network operators have traditionally operated networks using per-

flow splitting mechanisms, e.g., based on hash calculations on the

packet header (i.e., specific IP and TCP/UDP fields). The reason for

using per-flow mechanisms stems from the way TCP congestion

control (such as, NewReno and Cubic) reacts to the presence of

packet reordering by assuming network congestion, which may not

always be the case. Specifically, when the receiver of a TCP flow

receives packets out of order, it sends duplicate acknowledgments

(dupACKs) for the first missing packet in the received TCP stream.

When the sender receives three dupACKs, the sender assumes that

the network is congested and reduces its congestion window, and

consequently its sending rate. Packet reordering may arise when

a routing (re-)configuration takes place and a flow is moved from

a high latency path to a low latency path. This can happen, for
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example, when network operators (or automated TE tools) update

any hash-based traffic splitting ratios in the network, which is an

operation known to cause flow rehashing [21, 39].

Evolution of TE in cloud networks. Traditional TE tools

and mechanisms (e.g., OSPF [28] and RIP [18]) are ill-suited for

supporting the ever-growing inter-region traffic of large cloud

networks. Such tools are tailored to shortest path routing and

only support uniform splitting ratios, thus they lack the fine-

grained routing control needed to effectively utilize network

resources. Consequently, wide-area network operators have long

relied on MPLS-based OSPF extensions for improved TE [15], by

periodically re-optimizing network routes using preconfigured

route computation algorithms (e.g., Constrained Shortest Path First

(CSPF)) according to the measured traffic volumes. Recently, the

three largest cloud providers (aws, azure, and gcp) transitioned to

SDN-based networks [17, 20, 22], in which network operators have

full control of the monitoring and route computation processes

using the well-defined interfaces between the control- and data-

planes.

3 MEASUREMENT METHODOLOGY

To understand the extent to which a cloud provider’s TE operations

affect the latency of traffic in their networks, we performed a study

across Amazon aws [17], the largest worldwide cloud provider

network in terms of market share [27].

Goals of the study. In Fig. 1, when our application established

three TCP connections to another region, we noticed that the

latencies were not only different among the three connections but

also changed over time and in a step-wise manner. Many questions

arise from this measurement: (i) are path changes the cause of the

steps in the RTT trace? if so, (ii) how and what is the persistence

of each path? (iii) what is the difference between the minimum

and maximum observed latency, (iv) are there source ports that

experience long-term better RTTs (and One Way Delay (OWD)

latencies) with respect to other ports? (v) do we observe the same

behaviour across all region pairs and to what extent?

In order to answer these questions, we performed a systematic

set of measurements of the aws inter-region network. We note that,

while we suspect that Amazon aws uses hash-based traffic splitting

mechanisms, our measurements and conclusions do not rely on any

specific assumptions of how the traffic splitting mechanisms are

implemented. Our first goal was to identify whether the step-wise

latency changes correspond to actual path changes (possibly due

to TE operation) and analyzing the frequency and extent of latency

changes both spatially — across different flows — and temporally.

3.1 Detecting TE activity

To detect latency changes that occur as a result of path changes,

we introduce a methodology for filtering out congestion noise.

Measuring RTT and OWD flow latencies. Before delving into

the intricacies of the algorithm, we first describe our measurement

setup. We performed both RTT and OWD measurements using

TCP and UDP flows. On all Virtual Machines (VMs) we use chrony
configured to access the Amazon Time Sync Service [6], which

provides high precision time synchronization. As we do not have

visibility inside the Amazon aws network or to its routing, we

assume flows can use different forward and backward paths for

their traffic. As such, from here on, we use the term “path” to simply

refer to the joint forward and backward communication paths used

by a flow for the RTT measurements and the forward path only for

OWD measurements.

Decoupling propagation delays from congestion. In Fig. 1,

one can easily observe that the latency experienced by a flow

consists of a base propagation delay (due to traversing a certain

geographical distance over a given routing path) and spurious

congestion delay. In this figure, we identified several moments (each

denoted by a black dashed vertical line) where the minimum latency

observed during a certain time window (i.e., the base propagation

latency) suddenly changes by at least 0.5 ms.

One way to infer TE activity in the cloud’s backbone network is

to detect these sudden changes in the base propagation latencies

while filtering out the congestion component — which otherwise

might be falsely interpreted as path changes resulting in an

overestimation of TE activity. This problem is well-known and

several techniques have previously been proposed to extract base

propagation delay from latency measurements when possible (i.e.,

when congestion is limited and buffers periodically drain) [2, 10, 26].

Roughly speaking, these techniques are based on computing a

rolling minimum of the last k observed latencies. Using this

approach, we were unable to achieve a 0% rate of false positive, i.e.,

avoiding non-existing path changes. The minimum false positive

rate that we achieved was 7.69% with a rolling window of k = 20.

Therefore, we enhanced the rolling minimum technique as we

will explain later in this section. It is also worth noting that using

traceroutes to detect paths [3] requires cooperation of the cloud

provider and can fail to correctly detect paths when routers do not

respond with ICMP errors.

We first present our technique to extract base propagation

latencies from awsmeasurements while removing congestion. Then

we validate the accuracy of this technique to detect TE activity (i.e.,

path changes). We want to stress that we do not claim our technique

is general but rather we tailored our path change detection to the

aws network and its observable congestion profile. We further

discuss this aspect in Section 6.

Our approach to detect path changes. We use a conservative

approach that computes the “mode” in a sliding window (see Fig. 2

for an example). For each flow, we first aggregate the measured

latencies (top-left part of the figure) across 1 second intervals by

computing the minimum latencies across 5 probes1. We then apply

our sliding window mode-based function using a window size of

4 seconds. While sliding our window we maintain an estimate of

the current base propagation latency. If 3 out of 4 observations in a

window are within 0.5 ms of the minimum value in the window, we

say that the minimum is stable. Two cases are possible: (a) a window

has a stable minimum or (b) not. In case (a), i.e., the minimum is

stable, if the minimum is also within ± 0.5ms from the currently

estimated base propagation latency, we assume that the estimated

base propagation latency is stable and do not modify it. Otherwise

1Probes are sent at 200 ms intervals
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(i.e., the new minimum is not within ± 0.5ms from the estimated

propagation latency), we update the propagation latency to the

new minimum. In case (b), i.e., the minimum is unstable, hence we

ignore the value and keep the estimated base propagation latency

unchanged.

In Fig. 2, the minimum of 7.9 ms in window wn is stable since

at least 3 latency samples in the window are within 7.9 ± 0.5 ms.

Therefore, we update the estimated propagation latency with this

stable minimum. Window wn+1 is stable and the minimum of

8.2 is within 7.9 ± 0.5 ms. Therefore, we do not update the base

propagation estimate. Both windowswn+2 andwn+3 are unstable

because of the three samples 6.8, 8.2, and 9.8ms. For this reason,

we keep the previously computed base propagation latency as our

estimate. Windowwn+4 is stable and the minimum of 6.8 ms is not

within 7.9± 0.5 ms; therefore, we update the new base propagation

latency with this new value.
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Figure 2: An overview of path detection using a mode-based

sliding window that computes a running minimum. We

depict an example where transient spikes (≥ 0.5 ms) are

filtered out, whereas actual base propagation changes (with

stable latencies) are eventually detected.

To further remove congestion noise, we cluster our latency

classes into 1-millisecond bins, by rounding to the nearest

millisecond. We then compute the churn — or number of flows

admitted — to all observed clusters. If a cluster has less than 0.1%

of the sum of all cluster admissions, we conservatively consider

it as congestion noise and remove it from our measurements. We

presume that, in these cases, such events are likely to occur if there

is persistent congestion — with minimal latency oscillations which

can result in false positives. As such, given that Amazon offers

99.9% availability for most of their inter-region services, we opt to

remove clusters receiving less than 0.1% activity. We refer to the

sequential execution of the mode sliding window followed by the

above filtering technique as the path change detector.

Note that if a flow is moved to a path with the same latency, we

are unable to detect this change, thus our conservative approach has

false negatives. In the next subsection, we show that our approach

can accurately distinguish path changes from congestion events

in the aws network. This eliminates false positives in path change

detection.

3.2 Accuracy of path change detector

To verify that the latency changes observed by our measurements

(e.g., Fig. 1) are due to routing changes in the network (and

not caused by our measurement technique, congestion, cloud

interference, etc.), we performed three sets of experiments: (i) we

measured RTTs among VMs within one availability zone between

two different DCs, (ii) identified and correlated packet reordering

across the aws WAN with the changes in the extracted base

propagation latencies from RTT measurements, and (iii) identified

and correlated changes in network paths using traceroute with

measured OWD. Additionally, we discussed our findings with cloud

networking experts, who had read an early draft of our paper, and

they supported these findings.

Latency measurements within the same region. First, we

measured network RTT between different VMs located in the same

region but in different availability zones. Our results show that

intra-region latencies are stable and do not experience changes

such as those seen in Fig. 1. We conclude that latency fluctuations

are caused by traversing the inter-region cloud backbone network.2

Packet reordering correlation. Next, we deployed a pair of

c5.large VMs in the Oregon and Virginia aws regions. Using

our custom traffic generator (deployed in Oregon and Virginia) we

measured RTT by sending UDP packets every 0.5 ms continuously

for 2 hours. Each packet had a unique ID and a monotonically

increasing sequence number. We note that no packet was dropped

during the experiment. By identifying inconsistencies in the

sequence numbers at the receiver, we could detect when packets

arrived out of order. Next, we correlated the instances of out-of-

order arrivals with the observed RTT between VMs in Oregon and

Virginia. The top graph in Fig. 3 shows a 2-hour snapshot of RTTs

between Oregon and Virginia. The red vertical lines indicate when a

sequence of packets arrived out of order. Note that such reordering

events are strongly correlated with decreases in measured RTT. In

some cases, possibly due to asynchronous network updates, we

observe that the base propagation latency may quickly oscillate

between two values before stabilizing to one of them. These events

may mistakenly give the impression that, in Fig. 3, we observed

packet reordering events when the base latency increased, as the

path latency decreases are indistinguishable.

As discussed in Section 2, when a network flow ismoved (e.g., due

to TE) to a path with lower latency, subsequent packets can overtake

the in-flight packets on the higher latency paths; thus, they arrive

out of order. In contrast, moving to a path with a higher latency does

not affect the order of packet arrivals. Therefore, packet reordering

events can only be used to detect path changes to lower latency

paths. Furthermore, routing changes that cause RTT decreases of

less than 0.5 ms (e.g., at 14:00 on the x-axis) may not be detected by

our measurement as packet probes are transmitted exactly every

0.5 ms. We recall that since we do not observe any packet drops,

packet reordering can only occur due to path changes or some

specific switch’s packet schedulers; hence, they are not due to

congestion in the network. By observing a high correlation between

packet reordering events and latency decreases, we exclude those

reordering events due to specific packet schedulers at the switches.

2For brevity, we do not show these results, but all samples can be found in [1].
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Increasing the frequency of probe generation could increase the

sensitivity of our measurement.

To evaluate whether our path change detector detects all the path

changes associated with packet reordering (and thus changes to

lower latency paths), we fed as input the packet trace measurements

to our path change detector and plotted the output in the bottom

subplot of Fig. 3.We plotted a dotted red line when our path detector

detects a negative/positive latency path change. We observe that

our path detector accurately detect the vast majority of the negative

latency path changes corresponding to packet reordering events

(some of them may not be detected due to noise in the latency

signal). More importantly, out path change detector never reports

a non-existing latency-decrease path change, thus achieving zero

false positive rate. We note that the packet reordering correlation

cannot be used to verify the accuracy of latency-increase path

change detection.

Figure 3: Measuring path detection accuracy using

reordering events. The top plot shows observed RTTs

and packet reordering occurrences whereas the bottom

plot shows the filtered RTTs computed via our path change

detector as well as the detected path change events.

Traceroute correlation. Finally, we identified and correlate

changes in network paths (using traceroute) for a sample TCP flow

between VMs in Oregon and Virginia with the measured OWD.

We established a TCP flow between these two regions and sent

ping probes at a rate of 5 per second to measure RTT and OWD. In

parallel, we ran traceroute measurements that were obtained using

our custom traceroute (based on the principles described in [3]).

The traceroute crafted network packets that matched the 5 tuples

of the sample TCP flow to guarantee that both packets from the

traceroute and the TCP flow would follow the same network path.3

We ran traceroute every 20 seconds and recorded the observed

network paths. By analyzing the sequence of measured paths we

identified the moments when changes in routing happened. These

events were correlated with the OWD latency measured using TCP

flows. Fig. 4 shows the OWD network latency with routing changes

shown as vertical red lines. This figure illustrates that every change

in OWD is accompanied by a change in the forward network path

(unless the duration of such a change was less than 20 seconds as

the traceroute would miss such event). Note that the opposite is

not always true; as two distinct network paths may have nearly

identical network latency, thus resulting in no network latency

change.

Aswith packet reordering, we show in Fig. 4 that our path change

detector identifies all the traceroute path change events that incur

a latency change of at least 0.5 ms.

Figure 4: Measuring path detection accuracy using inflow

traceroutes. Top plot shows path changes captured via

traceroutes and bottom plot shows same output as Fig. 3.

3.3 Measurements description

We have so far established that it is feasible to rely on changes in

the base propagation latency to accurately detect path changes in

the aws network. We now discuss in detail the set of long-term

measurements performed to answer the measurements goals stated

at the beginning of this section.

3This is the only experiment where we assume the presence of per-flow load balancing
in the network.
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Our measurements can be broken into two sets: (i) Macro-scale

measurements that collect all the observable base propagation

latencies between 120 unique Amazon aws region pairs and (ii)

Micro-scale measurements that are used for analyzing in deeper

detail the performance of the individual flows (e.g., number of path

changes experienced) and compare among flows (e.g., to examine

fairness) during the complete duration of the measurement. In

the first set of measurements, for each pair of regions, we select

two machines in two different regions and create a large number

of flows using many different source ports. We randomly pick

a set of 512 ports every 30 seconds. The goal is to compute the

maximum difference between observed base propagation latencies

among all the DC pairs. The second set of measurements targets

a limited number of selected region pairs, but generates a greater

number of probes per second in order to detect latency changes

at a fine-grained temporal resolution. To gather per-flow statistics,

we randomly select 512 ports and keep them unchanged for the

entire duration of the measurement. We describe the specifics of

our experimental configurations below and summarize them in

Table 1.

Table 1: Testbed configuration for measurements.

Config. Macro-scale Micro-scale

# of DC Pairs 120 4

# of Flows 512 512

Probing Rate 10 probes every 30s 5 probes/s

Flow Generation Dynamic (every 30s) Static

Duration 2 days 1 week

Ping Mechanism Raw Sockets TCP Ping

Results Fig. 5 all except Fig. 5 & 15

Testbed. We use two distinct setups to conduct our macro and

micro-scale measurements on aws. Our macro-scale testbed probes

paths between 16 regions located in 16 different Amazon aws

regions. We create c5.large EC2 instances in each region and

connect them all-to-all, for a total of 120 unique region pairs. In

contrast, our micro-scale measurements are deployed in a more

limited setting and focus on only 4 region pairs.

Probing. In our macro-scale experiments, we use raw sockets

to perform an exhaustive search of base propagation latencies by

emulating TCP connections. This allows us to efficiently probe

paths by creating custom TCP packets with different source ports

without being bound by the maximum number of TCP connections

that can be created on a given VM instance. We perform a search

by picking 512 random ports every 30 seconds. For our micro-scale

measurements, we focus on only four region pairs — selected among

the top 10% pairs in terms of greatest differences in the previously

observed propagation latencies — and no longer emulate TCP

connections, but instead rely on hash-consistent TCP ping, where

we maintain 512 static TCP connections between each regions pair.

We verified that our probes are never retransmitted twice during

our measurements, e.g., due to packet drops.

4 ANALYSIS OF THE RESULTS

We showed in Section 3 that we can use our path change detector

to extract the base propagation latency of the path through which a

flow in being routed as well as detect when the flow is rerouted over

a different path. We refer to flow latency as the base propagation

latency of the path through which the flow is being routed. We

say that a flow changed path if the flow latency changes by at least

±0.5 ms, as described and validated in Section 3.

In this section, we evaluate the frequency and magnitude of

the flow latency changes observed between aws regions using

the measurements obtained from both the macro- and micro-scale

experiments described in Section 3. These results shed light on the

extent to which TE operation is performed within the aws cloud

backbone network and the assumptions that can be made by cloud

application developers. Our main findings can be summarized as

follows: (i) between two machines there may exist many different

path with diverse latencies (Section 4.1), (ii) some paths may

suddenly become unavailable (Section 4.2), (iii) half of the observed

paths persist for 10 seconds or less (Section 4.3), (iv) the lowest

latency paths have the highest flow churn (Section 4.3), and (v)

some flowsmay consistently experienceworse propagation latencies

than others (Section 4.4). Results (ii-v) are based on the micro-

experiments, while result (i) is based on the macro-experiment.

4.1 Flow latencies vary greatly across regions

To understand the spectrum of possible base propagation path

latencies experienced by a flow, we first measure the highest (max)

and lowest (min) flow latency for each of the unique region pairs

as described in the macro-scale paragraph in Section 3. Fig. 5(a)

shows a CDF of the distribution ofmax −min latency differences

across all DC pairs. We see that the median of these differences is

at 10 ms, but can increase to roughly 35 ms at the 95th percentile.

While these differences appear to be non-negligible, it is hard

to reason about their significance in isolation since the minimum

inter-region latencies can be 10s to 100s of milliseconds. In order to

put these numbers into perspective, Fig. 5 (b) shows a CDF of the

relative max

min
flow latency percentages; where the latency change is

computed as the percentage increase from the lowest (min) to the

highest (max) flow latency observed for each region pair. We can

clearly see a heavy-tailed distribution, with changes of up to 32%

at the 95th percentile. When such large jumps in latency occur this

can negatively affect services that require consistent inter-region

request-response latencies.

4.2 Availability of paths

While it is clear that the maximum latency change can be quite

profound, this value is computed based on the best and worst

flow latencies observed during a period of 2 days. However, it

is not immediately clear whether these latency classes are available

universally or only during certain time periods. To evaluate this, we

took a closer look at four region pairs, namely: “Oregon-Virginia”,

“Sydney-Tokyo”, “São Paulo-Montreal”, and “Singapore-Paris”. We

chose these pairs to represent different continent combinations

(with the exception of “Oregon-Virginia”, where both are in the

US) from the top 50th percentile of regions pairs that showed the

largest absolute latency differences. We plot the latency differences
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for these regions pairs in Fig. 6 where “Oregon-Virginia” has the

highest percentage change at 40% and “Sydney-Tokyo” being the

lowest at roughly 10%.

(a) Latency difference (ms)

(b) Relative latency change (%)

Figure 5: CDF of the (a) absolute differences (max −min) and
(b) relative percentages

(
max

min

)
flow latencies across all the

aws region pairs.

Figure 6: Absolute and relative latency changes for four

different Amazon aws DC pairs.

To show the availability of paths across time, in Fig. 7 we plot

the flow latency percentiles of 512 flows observed for each region

pair over time. The blue area corresponds to the inter-quartile, the

bottom (upper) dark gray area corresponds to the 5th to 25th and

the 75’th to 95th interpercentile range, and the bottom (upper)

light gray area corresponds to the 0th to 5’th and the 95th to

100th interpercentile range. The plotted latencies are the average

base propagation latencies obtained from the path change detector

(fed with the raw measurements) binned in 1 hour intervals, and

thus do not include congestion-induced spikes. We can clearly

see in all subfigures (with the exception of (a)) that the latencies

experienced by the flows can change dramatically with time. The

inter-quartile ranges (highlighted in blue) can shift sporadically

over time, indicating that certain paths become less prevalent or

harder to reach (e.g., due to increased load or failures). Moreover,

looking at the minimum observed latency we observe that lowest-

latency paths become unavailable over time. For instance, in Fig. 7

(c), we saw on Day 3 a new low latency path that lasts for only a few

hours and then disappears for the rest of the week. This could be

caused by TE operations that reallocate the paths across different

region pairs or perhaps because of different types of customers.

Summary. Flow latencies between a single region pair can change

dramatically (by up to 32% at the 95th percentile). Moreover, some

latency classes are unavailable during specific hours of the day,

suggesting that specific paths become unavailable.

4.3 Flow latency persistence

In the previous section, we explored differences between flow

latencies and how flows are distributed across paths varies over

time. However, it is desirable to know how often these flow latencies

change. In fact, frequent routing changes can be a problem both for

cloud network operators as well as for a cloud’s customers since

frequent changes can have a negative impact on TCP flows due to

packet re-ordering and inaccurate RTT estimation [35].4

We study these changes by first looking into how long a flow

persists in a latency class. Fig. 8(a) shows a CDF of flow latency

durations for all flows for each region-pair. The y-axis represents
the fraction of events in which a flow moved to a new path and

persisted on that path for less than x seconds before being rerouted

to a different path. Surprisingly, from this plot we find that in

“São Paulo-Montreal” roughly 40% of flows moving to a new path

continue to use this path less than 10 seconds before moving to

another path. This can lead to packet re-ordering for flows longer

than 10 seconds—which, to put into context, is more than 75% of the

inter-region flows in Facebook’s caching clusters [34]. In contrast,

for “Sydney-Tokyo” flows change their paths rather infrequently

and 50% of those flows moving to a new path continue to use

that path for more than 280 seconds. As previously seen in Fig. 7,

this region-pair rarely exhibits any changes across its flow latency

distributions, suggesting that its paths are unlikely to be subject to

frequent TE changes. In Fig. 9, we break down the flow persistence

graph into the forward and reverse paths.

Secondly, we examine whether flows change their paths in

tandem, i.e., whether flows move to different paths at the same

time. Fig. 8(b) plots the number of flows (out of 512) that changed

their path at least once during a 20-second interval. The y-axis
presents the fraction of 20 second time interval bins within

which at most x flows change their path in a single bin. We

find that, “Singapore-Paris” and “São Paulo-Montreal” exhibit an

all-or-nothing property where either the majority of flows are

affected or none of them are affected. This indicates that TE events,

when triggered, can dramatically impact a large population of

flows, perhaps due to failures in the network, planned topology

4Evaluating the impact of latency instability on different congestion control
mechanisms is outside the scope of this paper.
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(a) Sydney-Tokyo (b) Singapore-Paris (c) Oregon-Virginia (d) São Paulo-Montreal

Figure 7: Changes in the distribution of latencies across 512 different flows binned in 1 hour intervals.

(a) Flow persistence (s) (b) # of flows changing paths (c) Flow path change interarrival time (s)

Figure 8: CDFs showing characteristics of traffic class changes across all the monitored flows. Subfigure (a) shows every path

change event of a flow, (b) shows the # of flows that experienced at least 1 path change in each 20 second time interval bin,

and (c) shows the interarrival time between any two path change events observed in the network. Legend: São Paulo-Montreal

; Paris-Singapore ; Sydney-Tokyo ; and Oregon-Virginia .

augmentation, an unwanted cascading effect — where changes in

the traffic matrix caused by the initial TE events trigger successive

waves of routing changes — or even asynchronous network updates.

In contrast, “Oregon-Virginia” (“Sydney-Tokyo”) exhibits many

small TE operations during (50% of) all the 20-second intervals.

To further investigate these cases, Fig. 8(c) shows the inter-arrival

time between flow path changes. In this figure, the y-axis shows
the fraction of path changes events across all flows such that the

time between that path change event and the next path change

event (possibly of a different flow) is x . Similar to the previous plot,

“Oregon-Virginia” also demonstrates unique characteristics. On

average, its flows change paths more frequently — with interarrival

times of inter-flow path changes of less than 5 seconds at themedian.

Moreover, this rate of changes can increase leading to many path

changes in 150 ms. This may suggest different subclasses of TE

events — with major events (likely in response to significant traffic

changes) occurring less frequently but affecting more flows. Minor

TE events might be triggered in reaction to smaller congestion

events and consequently only need to reroute a small subset of the

flows (e.g., by slightly modifying traffic splitting ratios).

Different TE mechanisms impact flow persistence. Based on

discussions with cloud networking experts, we decided to verify

how the persistence of the flows would vary during different times

of the year. We measured the aws network for several weeks,

starting from December 2018 until the end of February 2019, for

the critical pair of Oregon and Virginia regions. We observed a

significant change during the month of February. Conversations

with cloud networking experts suggested that this could have been

due to a change of the aws configuration to a less reactive TE after

the high-load period of the Christmas holidays and January. We

plot the CDF of the flow persistence (similarly to Fig. 8 (a)) in Fig. 10

for two distinct weeks of February when we observed the change.

While the median flow persistence clearly decreased by roughly a

factor of 1.5, one still observes a very low path persistence for ∼30%

of the flow path change events. However, a thorough investigation

of these results is outside the scope of this paper.

Are flow latencies correlated with flow churn? While flows

can change paths quite frequently (in the order of seconds), we

have not yet studied the frequency of path changes of a flow with

respect to its flow latency. Specifically, do flows on low latency paths

experience higher flow churn, i.e., the number of flow rerouting

events on a specific path. To investigate this we group paths by

rounding the path latency and call the rounded latency a latency

class. We choose the relatively stable region pair of São Paulo-

Montreal to see how flows compete for paths in steady state.

We show in Fig. 11 a CDF (blue dotted line) of the flow churn

of each latency class. The x-axis shows all the observed latency

classes, ordered from left to right by increasing number of flow

churns. The corresponding latency of each latency class is shown

by the red solid line. We can clearly observe a negative correlation,

where paths belonging to low latency classes exhibit higher flow

churn (with only a few outliers). We reason that this could occur

due to flows being opportunistically routed to low latency paths

(provided they are available) with the possibility of subsequently

being preempted by higher priority flows. Therefore, given the

increased competitiveness for low latency paths, flows experience

more churn on such paths, while the reverse is true for higher

latency paths. This type of greedy shortest-path TE mechanisms

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

19



(a) Forward flow persistence (s)

(b) Reverse flow persistence (s)

Figure 9: CDFs showing asymmetry of flow latency class

persistence across all 512 monitored flows. Subfigures (a) &

(b) report results for the latency classes on the forward and

reverse paths, respectively.

Figure 10: CDF of class durations before and after a TEpolicy

change by Amazon.

have been widely used in MPLS-TE [29, 32] and B4 [22] networks.

Our results suggest that the Amazon aws network uses similar TE

mechanisms, although we did not get confirmation of this from the

aws team.

Figure 11: Flow churn observed for latency classes found on

São Paulo-Montreal. The blue dotted line is a CDF of the

number of admitted flows reported by each latency class.

The red line is the latency of the associated class.

Summary. We have shown that flows change their latency classes

frequently and more than 50% of the flows moving to a new

path change paths within 10 seconds. We have also established

that these changes often happen in tandem in certain region

pairs. We presented our results to cloud networking experts and

they confirmed that low-latency paths tend to experiences higher

flow churn, suggesting TE tends to reactively move flows to

low latency paths whenever capacity is available. However, as

noted earlier these frequent path changes can negatively impact

TCP’s congestion control algorithm and ultimately negatively affect

tenant applications.

4.4 Flow latency fairness

The previous sections highlighted issues due to short persistence of

flows on paths. However, one might assume that frequent latency

class changes means that flows are unlikely to have unfavorable

path assignments for prolonged durations. Unfortunately, our

results show that this is not the case.

Fig. 12 shows a CDF of the median, 95th, and 99th percentile base

propagation latencies of all the flows over a one week timespan. We

see that these plots resemble a step function, but with significant

differences among flows. For instance, in Fig. 12(d), the median

latency changes from 105 to 118 ms — a 12% increase. The same

applies for the higher percentiles as well.

To further study unfairness, we also look at path changes. Fig.

13 shows a CDF of the total number of path changes (over the same

one week interval) experienced by different flows. Similarly, we

see that certain flows are more likely to exhibit more frequent path

changes, thus further exacerbating the level of unfairness among

flows.

Summary. These results indicate that despite frequent path

changes, flows are treated unfairly, with some persistently

experiencing poor performance. One reason for this unfairness

may lie in the specific implementation of weighted traffic-splitting

mechanisms. For instance, implementations based on tables and

buckets [39]may tend to rarelymove some of the flows, thus leaving

them in a poor latency class for a prolonged time.
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(a) Sydney-Tokyo (b) Singapore-Paris

(c) Oregon-Virginia (d) São Paulo-Montreal

Figure 12: Distribution of flow latency percentiles on

512 monitored flows. Flow latencies can differ, even over

two days. This indicates that some flows are consistently

unfairly penalized despite frequent path changes.

Figure 13: CDF of path changes experienced by different

flows.

Figure 14: Flow latency persistence expressed in terms of a

given “spike” threshold.

4.5 Impact on application performance

We also conducted application benchmarks between instances

deployed in Oregon and Virginia. Before discussing these results,

it is relevant to look into path change frequency for a given

latency change threshold, which we refer to as spike, since some

applications may not be affected by smaller latency spikes (i.e. < 1

ms). Fig. 14 shows a CDF of the latency persistence for spikes of at

least 1 ms, 2 ms, and 5 ms for pings between Oregon and Virginia.

We can see that the median flow persistence at 1 ms is ~170 seconds,

and this increases up to ~300 seconds at a 5 ms spike threshold.

This shows that flows running for more than a few minutes can

experience up to 5ms spikes — almost a 10% latency increase. Spikes

less than 5 ms occur infrequently and are not shown in this graph.

For our application benchmarks, we used the rsync utility —

which is popularly used for mirroring and performing incremental

snapshots across storage nodes. We configured our benchmark

to transfer 100K files between instances running in both regions,

with each file having a constant size of 1 KB. For each rsync run,

we use two distinct strategies to choose the source port for the

rsync connection: (a) Random: This is the default strategy, where

the source port is picked by the OS from the ephemeral range of

available ports. (b)MinimumRTT : This strategy probes 128 different

TCP ports for 10 seconds prior to each rsync run. The port with the

lowest average RTT is chosen and a NAT rule is inserted to force

the next rsync call to utilize the selected port. We repeated these

experiments 500 times and collected the runtimes of rsync calls. Fig.

15 shows a CDF of the rsync runtimes for both configurations.

We can see that, even when applying a simple minimum RTT

strategy for preferential port selection, we observe a ∼7% reduction

at the median. In addition, the resulting rsync performance is more

predictable — notably, the 99th percentile for Min. RTT is lower

than the median for Random and the standard deviation drops by a

factor of 2.8x, i.e., from 259 ms to 90 ms. By analyzing TCP dumps of

this traffic, we observed that these differences are mainly due to the

RTT of the assigned path — which directly impacts the throughput

of TCP. We also note that this is not an artifact of TCP slow start,

since rsync maintains the same TCP connection across an entire

run (spanning 100K files). The impact on shorter flows should be

even more noticeable and we leave this for future work.

Cloud provider tenants can arguably use similar strategies to

reduce latency for their geo-distributed applications. However,

this could increase unfairness, as tenants that do not utilize this

information would be prone to using unfavorable path assignments.

Moreover, this behavior might be at odds with the TE of the

cloud provider — which could be trying to move flows away from

congested paths. This raises the important question as to whether

cloud providers should make path allocations more transparent

and/or allow tenants to control such allocations (perhaps for a price).

A game theoretic analysis could aid in answering such questions

and we leave this investigation as future work.

Summary. Application performance can be hampered by

unfavorable path assignments. Tenants might be incentivized to

actively pick ports with the lowest observed latencies in order to

achieve better performance. However, this could also exacerbate

unfairness among tenants and work antagonistically with the cloud

provider’s TE policies.
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Figure 15: CDF of rsync runtimes for transferring 100K files

between Oregon and Virginia. Two different strategies for

port selection are shown.

5 RELATEDWORK

There has been a great amount of work concerning measurements

of Internet routes across a variety of performance dimensions. In

this section, we discuss only the most closely related work. Several

previous works investigated the impact of TE mechanisms on

flow performance [4, 12]. Some of these results showed how the

performance of a flow can be affected during reconvergence of

routing protocols in the wider Internet, possibly including paths

across different domains [31]. In contrast, our work focused on intra-

domain routing where the TE modification is controlled by a single

entity. Others have shown how MPLS-based TE can potentially

move flows of traffic to high-latency paths in response to routing

reoptimization computation [29]. This is to be expected as TE has to

move flows of traffic away from congested shortest paths. However,

the authors of this previous work do not discuss whether some

source ports experience much worse latencies (i.e., flow unfairness).

Additionally, we observed a much higher frequency of path changes

than expected, possibly due to SDN control of the network.

The techniques to identify base propagation latency are not novel

and the concept of identifying base propagation latency by tracking

a minimum latency sample has been previously used in [2, 10, 26].

Another large body of literature focuses on inferring the topology

of load-balanced networks. The Multipath Detection Algorithm [5]

together with Paris [3] and Tokyo [30] traceroutes improve upon

traditional traceroute by avoiding measurement anomalies due to

load balancing in the network. DTRACK [13] is a probing tool that

predicts routing changes and decides on the number of probes

necessary to identify a new network path. In contrast, our work

does not aim to inferring the network’s topology, rather our goal

is to observe the impact of TE on flow latency persistence and

unfairness across different source ports over time.

Using source port manipulation to send traffic via the highest-

performance paths has received some attention in the context of

datacenter networks [14] and MPTCP [19]. However, our work

differs in several ways. First, we do not claim any novelty in using

source ports to route traffic along different paths. Second, MPTCP

periodically opens connections on new source ports to discover

better paths. We believe MPTCP — and MultiPath protocols in

general, could use dynamic port search techniques to proactively

select the best performing source ports. Finally, these prior works

do not investigate the impact of TE on flow latency.

6 DISCUSSION

Comparisons with other Cloud Provider networks. This

paper does not aim to compare different cloud providers’ networks.

We merely highlight the presence and effects of very reactive TE

mechanisms in the largest cloud provider’s network. However, we

also ran packet reordering experiments on Google Cloud for its

corresponding Oregon-Virginia pair. Our results indicated fewer

path changes, only occurring on the order of tens of minutes,

leading us to believe that they utilize less reactive TE policies for

this particular pair. This is possibly due to over-provisioning and/or

more predictable traffic demands as most applications in the Google

network are controlled by Google and not tenants. We leave the

study of other cloud providers’ networks as future work.

Tuning the path change detector. We tuned our path change

detector specifically for the Amazon aws network by setting the

path change threshold to 0.5ms and validated this value with

additional measurements (see Section 3). We note that the path

detector must be carefully tuned and validated for each network,

using the techniques described in Section 3.2. We leave this task as

future work.

Impact of VM instances. One may wonder whether the latency

variations are due to delays in the aws VM instances. As mentioned

in Section 3.2, we performed latency measurements within the

same region and observed stable latencies. Furthermore, our packet

reordering measurements further confirmed the observed latency

decreases were due to path changes.

Impact of different packet types (e.g., TCP, UDP). Given the

inherent blackbox measurements of this paper, we asked ourselves

whether some of our traffic was affected by the fact that we used

carefully crafted TCP and UDP packets. We shared the results with

cloud networking experts and were able to corroborate that what

we observed was due to TE activity and not simply an artifact of

our probing technique.

Use of flowlet switching. We have conducted packet train

experiments that transmit UDP packets at up to 5000 packets per

second to see whether the aws network uses flowlet switching [36]

— a load balancing technique that aims to preserve flow path

assignments for larger batches of packets. Even at these higher

packet rates, we still observe packet reordering, which leads us to

believe that the network does not employ flowlet switching.

7 CONCLUSIONS

The growth of Internet applications with low-latency and high-

bandwidth requirements places tremendous challenges on network

operators. To investigate our observations of latency variations,

we performed a large-scale measurement of the Amazon aws

network and devised techniques to accurately detect path changes.

Our results unveiled some surprising results. TE mechanisms in

this network seem to operate around at approximately 10-second
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intervals, well below previously reported time scales. Consequently,

flows of trafficmay be subject to frequent and sharp latency changes

as well as persistent unfair treatment. Flow latencies between a

single region pair can change dramatically (by up to 32% at the 95th

percentile) and expose traffic to greater unfairness across flows.

Finally, tenants have incentives to move their traffic to low-latency

paths as demonstrated in our rsync use case. We believe this paper

will spur discussions on the impact of high-frequency TE on the

design of congestion control mechanisms and cloud applications.
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